A Comparative Analysis of Machine Learning Classifiers for Twitter Sentiment Analysis
نویسندگان
چکیده
Twitter popularity has increasingly grown in the last few years making influence on the social, political and business aspects of life. Therefore, sentiment analysis research has put special focus on Twitter. Tweet data have many peculiarities relevant to the use of informal language, slogans, and special characters. Furthermore, training machine learning classifiers from tweets data often faces the data sparsity problem primarily due to the large variety of Tweets expressed in only 140-character. In this work, we evaluate the performance of various classifiers commonly used in sentiment analysis to show their effectiveness in sentiment mining of Twitter data under different experimental setups. For the purpose of the study the Stanford Testing Sentiment dataset STS is used. Results of our analysis show that multinomial Naïve Bayes outperforms other classifiers in Twitter sentiment analysis and is less affected by data sparsity.
منابع مشابه
Forecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملNTNUSentEval at SemEval-2016 Task 4: Combining General Classifiers for Fast Twitter Sentiment Analysis
The paper describes experiments on sentiment classification of microblog messages using an architecture allowing general machine learning classifiers to be combined either sequentially to form a multi-step classifier, or in parallel, creating an ensemble classifier. The system achieved very competitive results in the shared task on sentiment analysis in Twitter, in particular on non-Twitter soc...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کاملImproving Sentiment Analysis Through Ensemble Learning of Meta-level Features
In this research, the well-known microblogging site, Twitter, was used for a sentiment analysis investigation. We propose an ensemble learning approach based on the meta-level features of seven existing lexicon resources for automated polarity sentiment classification. The ensemble employs four base learners (a Two-Class Support Vector Machine, a Two-Class Bayes Point Machine, a Two-Class Logis...
متن کاملComparative Evaluation of Algorithms for Sentiment Analysis over Social Networking Services
Twitter is a highly popular social networking service and a web-based communication platform with million users exchanging daily public messages, namely tweets, expressing their opinion and feelings towards various issues. Twitter represents one of the largest and most dynamic datasets for data mining and sentiment analysis. Therefore, Twitter Sentiment Analysis constitutes a prominent and an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Research in Computing Science
دوره 110 شماره
صفحات -
تاریخ انتشار 2016